Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 338
Filtrar
1.
Bioelectron Med ; 10(1): 10, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38594769

RESUMO

BACKGROUND: Glioblastoma (GBM) presents as an aggressive brain cancer, notorious for its recurrence and resistance to conventional treatments. This study aimed to assess the efficacy of the EMulate Therapeutics Voyager®, a non-invasive, non-thermal, non-ionizing, battery-operated, portable experimental medical device, in treating GBM. Using ultra-low radiofrequency energy (ulRFE) to modulate intracellular activity, previous preliminary results in patients have been encouraging. Now, with a focus on murine models, our investigation seeks to elucidate the device's mechanistic impacts, further optimizing its therapeutic potential and understanding its limitations. METHODS: The device employs a silicone over molded coil to deliver oscillating magnetic fields, which are believed to interact with and disrupt cellular targets. These fields are derived from the magnetic fluctuations of solvated molecules. Xenograft and syngeneic murine models were chosen for the study. Mice were injected with U-87 MG or GL261 glioma cells in their flanks and were subsequently treated with one of two ulRFE cognates: A1A, inspired by paclitaxel, or A2, based on murine siRNA targeting CTLA4 + PD1. A separate group of untreated mice was maintained as controls. RESULTS: Mice that underwent treatments with either A1A or A2 exhibited significantly reduced tumor sizes when compared to the untreated cohort. CONCLUSION: The EMulate Therapeutics Voyager® demonstrates promising potential in inhibiting glioma cells in vivo through its unique ulRFE technology and should be further studied in terms of biological effects in vitro and in vivo.

2.
Sci Rep ; 14(1): 7246, 2024 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538643

RESUMO

Glioblastoma (GBM) is the most common primary malignant cancer of the central nervous system. Insufficient oxygenation (hypoxia) has been linked to GBM invasion and aggression, leading to poor patient outcomes. Hypoxia induces gene expression for cellular adaptations. However, GBM is characterized by high intertumoral (molecular subtypes) and intratumoral heterogeneity (cell states), and it is not well understood to what extent hypoxia triggers patient-specific gene responses and cellular diversity in GBM. Here, we surveyed eight patient-derived GBM stem cell lines for invasion phenotypes in 3D culture, which identified two GBM lines showing increased invasiveness in response to hypoxia. RNA-seq analysis of the two patient GBM lines revealed a set of shared hypoxia response genes concerning glucose metabolism, angiogenesis, and autophagy, but also a large set of patient-specific hypoxia-induced genes featuring cell migration and anti-inflammation, highlighting intertumoral diversity of hypoxia responses in GBM. We further applied the Shared GBM Hypoxia gene signature to single cell RNA-seq datasets of glioma patients, which showed that hypoxic cells displayed a shift towards mesenchymal-like (MES) and astrocyte-like (AC) states. Interestingly, in response to hypoxia, tumor cells in IDH-mutant gliomas displayed a strong shift to the AC state, whereas tumor cells in IDH-wildtype gliomas mainly shifted to the MES state. This distinct hypoxia response of IDH-mutant gliomas may contribute to its more favorable prognosis. Our transcriptomic studies provide a basis for future approaches to better understand the diversity of hypoxic niches in gliomas.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Glioma/patologia , Glioblastoma/patologia , Hipóxia/genética , Hipóxia/metabolismo , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Células-Tronco Neoplásicas/metabolismo , Hipóxia Celular/genética
3.
Front Biosci (Landmark Ed) ; 29(1): 4, 2024 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-38287819

RESUMO

BACKGROUND: The current standard for Parkinson's disease (PD) diagnosis is often imprecise and expensive. However, the dysregulation patterns of microRNA (miRNA) hold potential as a reliable and effective non-invasive diagnosis of PD. METHODS: We use data mining to elucidate new miRNA biomarkers and then develop a machine-learning (ML) model to diagnose PD based on these biomarkers. RESULTS: The best-performing ML model, trained on filtered miRNA dysregulated in PD, was able to identify miRNA biomarkers with 95.65% accuracy. Through analysis of miRNA implicated in PD, thousands of descriptors reliant on gene targets were created that can be used to identify novel biomarkers and strengthen PD diagnosis. CONCLUSIONS: The developed ML model based on miRNAs and their genomic pathway descriptors achieved high accuracies for the prediction of PD.


Assuntos
Aprendizado Profundo , MicroRNAs , Doença de Parkinson , Humanos , Doença de Parkinson/diagnóstico , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Aprendizado de Máquina , Biomarcadores
4.
Clin Cancer Res ; 30(2): 323-333, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38047868

RESUMO

PURPOSE: Chordomas are ultrarare tumors of the axial spine and skull-base without approved systemic therapy. Most chordomas have negative expression of thymidylate synthase (TS), suggesting a potential for responding to the antifolate agent pemetrexed, which inhibits TS and other enzymes involved in nucleotide biosynthesis. We evaluated the therapeutic activity and safety of high-dose pemetrexed in progressive chordoma. PATIENTS AND METHODS: Adult patients with previously treated, progressive chordoma participated in an open-label, single-institution, single-arm, pilot clinical trial of intravenous pemetrexed 900 mg/m2 every 3 weeks and supportive medications of folic acid, vitamin B12, and dexamethasone. The primary endpoint was objective response rate according to RECIST v1.1. Secondary endpoints included adverse events, progression-free survival (PFS), tumor molecular profiles, and alterations in tissue and blood-based biomarkers. RESULTS: Fifteen patients were enrolled and the median number of doses administered was 15 (range, 4-31). One patient discontinued treatment due to psychosocial issues after four cycles and one contracted COVID-19 after 13 cycles. Of the 14 response-evaluable patients, 2 (14%) achieved a partial response and 10 (71%) demonstrated stable disease. Median PFS was 10.5 months (95% confidence interval: 9 months-undetermined) and 6-month PFS was 67%. Adverse events were expected and relatively mild, with one grade 3 creatinine increased, and one each of grade 3 and 4 lymphopenia. No grade 5 adverse events, unexpected toxicities, or dose-limiting toxicities were observed. Several patients reported clinical improvement in disease-related symptoms. CONCLUSIONS: High-dose pemetrexed appears tolerable and shows objective antitumor activity in patients with chordoma. Phase II studies of high-dose pemetrexed are warranted.


Assuntos
Cordoma , Neoplasias Pulmonares , Adulto , Humanos , Pemetrexede/efeitos adversos , Cordoma/patologia , Projetos Piloto , Glutamatos/efeitos adversos , Guanina/uso terapêutico , Estadiamento de Neoplasias , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Resultado do Tratamento , Neoplasias Pulmonares/tratamento farmacológico
5.
Cancer Gene Ther ; 31(4): 517-526, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38146006

RESUMO

AdAPT-001 is an oncolytic adenovirus (OAV) with a transforming growth factor beta (TGF-ß) trap, which neutralizes the immunosuppressive and profibrotic cytokine, TGF-ß. The aim or purpose of this phase 1 study was to assess the safety and tolerability and, secondarily, the efficacy of AdAPT-001 after single intratumoral injection (IT) (Part 1) and multidose IT injection (Part 2) in patients with superficially accessible, advanced refractory solid tumors. Part 1 enrolled 9 patients with a 3 + 3 single dose-escalation safety run-in involving 2.5 × 1011, 5.0 × 1011, 1.0 × 1012 viral particles (vps). No dose-limiting toxicities or treatment-related serious adverse events (SAEs) were seen. In Part 2, a dose-expansion phase, 19 patients received AdAPT-001 at 1.0 × 1012 vps until disease progression according to Response Evaluation Criteria in Solid Tumors or RECIST 1.1. The overall responses to treatment included confirmed partial responses (3), durable stable disease ≥ 6 months (5), and progressive disease (13). AdAPT-001 is well tolerated. Evidence of an anti-tumor effect was seen in both injected and uninjected lesions. The recommended Phase 2 dose was 1.0 × 1012 vp administered by intratumoral injection once every 2 weeks. Combination of AdAPT-001 with a checkpoint inhibition is enrolling.


Assuntos
Infecções por Adenoviridae , Neoplasias , Humanos , Adenoviridae/genética , Neoplasias/patologia , Critérios de Avaliação de Resposta em Tumores Sólidos
6.
Int Tinnitus J ; 27(1): 40-46, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38050883

RESUMO

BACKGROUND: Tinnitus is the perception of sound in the absence of external acoustic stimulation. Being one of the most common diseases of the ear, it has a global prevalence ranging from 4.1 to 37.2%. To date, it has been difficult to treat tinnitus as its pathophysiology is poorly understood and there are limited treatment options. OBJECTIVE: To investigate the effect of OKN-007 (also known as HPN-07), a nitrone-based investigational drug, in combination with oral N-acetylcycsteine (NAC), for the treatment of hearing loss and chronic tinnitus under an individual expanded access protocol. PATIENT CASE: We report the case of a patient who presented with left-sided ear fullness, mild tinnitus, and mild high frequency sensorineural hearing loss with 100% word recognition. A large enhancing mass seen on MRI revealed a vestibular schwannoma. He underwent subtotal resection of the tumor resulting in a moderate-to-profound sensorineural hearing loss and catastrophic tinnitus. The patient was treated with intravenous OKN-007 at 60 mg/kg dosed three times per week and oral NAC 2500 mg twice daily. RESULTS: Post-treatment audiometric testing revealed an average of 16.66 dB in hearing threshold improvement in three frequencies (125, 250 and 500 Hz) with residual hearing in the affected left ear. His tinnitus loudness matching improved from 90 dB to 19 dB post-treatment. His Tinnitus Handicap Inventory improved from 86/100 (Catastrophic) to 40/100 (Moderate). He also experienced improvements in sleep, concentration, hearing, and emotional well-being, and reported significantly decreased levels of tinnitusrelated distress. CONCLUSIONS: This case report highlights the feasibility and therapeutic potential of the combination of OKN-007 and NAC in treating hearing loss and tinnitus that warrants further investigation.


Assuntos
Surdez , Perda Auditiva Neurossensorial , Perda Auditiva Unilateral , Perda Auditiva , Neuroma Acústico , Zumbido , Masculino , Humanos , Zumbido/diagnóstico , Zumbido/tratamento farmacológico , Zumbido/etiologia , Perda Auditiva Unilateral/diagnóstico , Perda Auditiva Unilateral/etiologia , Perda Auditiva Unilateral/terapia , Neuroma Acústico/complicações , Neuroma Acústico/diagnóstico , Neuroma Acústico/cirurgia , Perda Auditiva/complicações
7.
J Mol Neurosci ; 73(11-12): 996-1009, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37982993

RESUMO

Amyotrophic lateral sclerosis (ALS) is a progressive, uncurable neurodegenerative disorder characterized by the degradation of motor neurons leading to muscle impairment, failure, and death. Senataxin, encoded by the SETX gene, is a human helicase protein whose mutations have been linked with ALS onset, particularly in its juvenile ALS4 form. Using senataxin's yeast homolog Sen1 as a model for study, it is suggested that senataxin's N-terminus interacts with RNA polymerase II, whilst its C-terminus engages in helicase activity. Senataxin is heavily involved in transcription regulation, termination, and R-loop resolution, enabled by recruitment and interactions with enzymes such as ubiquitin protein ligase SAN1 and ribonuclease H (RNase H). Senataxin also engages in DNA damage response (DDR), primarily interacting with the exosome subunit Rrp45. The Sen1 mutation E1597K, alongside the L389S and R2136H gain-of-function mutations to senataxin, is shown to cause negative structural and thus functional effects to the protein, thus contributing to a disruption in WT functions, motor neuron (MN) degeneration, and the manifestation of ALS clinical symptoms. This review corroborates and summarizes published papers concerning the structure and function of senataxin as well as the effects of their mutations in ALS pathology in order to compile current knowledge and provide a reference for future research. The findings compiled in this review are indicative of the experimental and therapeutic potential of senataxin and its mutations as a target in future ALS treatment/cure discovery, with some potential therapeutic routes also being discussed in the review.


Assuntos
Esclerose Amiotrófica Lateral , Humanos , Esclerose Amiotrófica Lateral/metabolismo , Neurônios Motores/metabolismo , Regulação da Expressão Gênica , Mutação , DNA Helicases/genética , RNA Helicases/genética , RNA Helicases/metabolismo , Enzimas Multifuncionais/genética , Enzimas Multifuncionais/metabolismo
8.
J Transl Med ; 21(1): 830, 2023 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-37978542

RESUMO

Advancing personalized medicine in brain cancer relies on innovative strategies, with mRNA vaccines emerging as a promising avenue. While the initial use of mRNA vaccines was in oncology, their stunning success in COVID-19 resulted in widespread attention, both positive and negative. Regardless of politically biased opinions, which relate more to the antigenic source than form of delivery, we feel it is important to objectively review this modality as relates to brain cancer. This class of vaccines trigger robust immune responses through MHC-I and MHC-II pathways, in both prophylactic and therapeutic settings. The mRNA platform offers advantages of rapid development, high potency, cost-effectiveness, and safety. This review provides an overview of mRNA vaccine delivery technologies, tumor antigen identification, combination therapies, and recent therapeutic outcomes, with a particular focus on brain cancer. Combinatorial approaches are vital to maximizing mRNA cancer vaccine efficacy, with ongoing clinical trials exploring combinations with adjuvants and checkpoint inhibitors and even adoptive cell therapy. Efficient delivery, neoantigen identification, preclinical studies, and clinical trial results are highlighted, underscoring mRNA vaccines' potential in advancing personalized medicine for brain cancer. Synergistic combinatorial therapies play a crucial role, emphasizing the need for continued research and collaboration in this area.


Assuntos
Neoplasias Encefálicas , Vacinas Anticâncer , Neoplasias , Humanos , Medicina de Precisão/métodos , Imunoterapia/métodos , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/tratamento farmacológico , RNA Mensageiro/genética , Neoplasias/terapia
9.
J Diabetes Complications ; 37(11): 108615, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37788593

RESUMO

BACKGROUND: Insulin resistance is the decreased effectiveness of insulin receptor function during signaling of glucose uptake. Insulin receptors are regulated by endocytosis, a process that removes receptors from the cell surface to be marked for degradation or for re-use. OBJECTIVES: Our goal was to discover insulin-resistance-related genes that play key roles in endocytosis which could serve as potential biological targets to enhance insulin sensitivity. METHODS: The gene mutations related to insulin resistance were elucidated from ClinVar. These were used as the seed set. Using the GeneFriends program, the genes associated with this set were elucidated and used as an enriched set for the next step. The enriched gene set network was visualized by Cytoscape. After that, using the VisANT program, the most significant cluster of genes was identified. With the help of the DAVID program, the most important KEGG pathway corresponding to the gene cluster and insulin resistance was found. Eleven genes part of the KEGG endocytosis pathway were identified. Finally, using the ChEA3 program, seven transcription factors managing these genes were defined. RESULTS: Thirty-two genes of pathogenic significance in insulin resistance were elucidated, and then co-expression data for these genes were utilized. These genes were organized into clusters, one of which was singled out for its high node count of 58 genes and low p-value (p = 4.117 × 10-7). DAVID Pathways, a functional annotation tool, helped identify a set of 11 genes from a single cluster associated with the endocytosis pathway related to insulin resistance. These genes (AMPH, BIN1, CBL, DNM1, DNM2, DNM3, ITCH, SH3GL1, SH3GL2, SH3GL3, and SH3KBP1) are all involved in either clathrin-mediated endocytosis of the insulin receptor (IR) or clathrin-independent endocytosis of insulin-resistance-related G protein-coupled receptors (GPCR). They represent prime therapeutic targets to improve insulin sensitivity through modulation of transmembrane cell signaling. Using the ChEA3 database, we also found seven transcription factors (REST, MYPOP, CAMTA2, MYT1L, ZBTB18, NKX6-2, and CXXC5) that control the expression of these 11 genes. Inhibiting these key transcription factors would be another strategy to downregulate endocytosis. CONCLUSION: We believe that delaying removal of insulin receptors from the cell surface would prolong signaling of glucose uptake and counteract the symptoms of insulin resistance.


Assuntos
Resistência à Insulina , Receptor de Insulina , Humanos , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Resistência à Insulina/genética , Endocitose/genética , Clatrina/metabolismo , Insulina/metabolismo , Fatores de Transcrição/metabolismo , Glucose , Proteínas de Homeodomínio , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação ao Cálcio , Transativadores
10.
Toxicology ; 499: 153652, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37858775

RESUMO

Aflatoxin B1 (AFB1) is a fungal metabolite found in animal feeds and human foods. It is one of the most toxic and carcinogenic of aflatoxins and is classified as a Group 1 carcinogen. Dietary exposure to AFB1 and infection with chronic Hepatitis B Virus (HBV) make up two of the major risk factors for hepatocellular carcinoma (HCC). These two major risk factors raise the probability of synergism between the two agents. This review proposes some collaborative molecular mechanisms underlying the interaction between AFB1 and HBV in accelerating or magnifying the effects of HCC. The HBx viral protein is one of the main viral proteins of HBV and has many carcinogenic qualities that are involved with HCC. AFB1, when metabolized by CYP450, becomes AFB1-exo-8,9-epoxide (AFBO), an extremely toxic compound that can form adducts in DNA sequences and induce mutations. With possible synergisms that exist between HBV and AFB1 in mind, it is best to treat both agents simultaneously to reduce the risk by HCC.


Assuntos
Aflatoxinas , Carcinoma Hepatocelular , Hepatite B Crônica , Neoplasias Hepáticas , Animais , Humanos , Carcinoma Hepatocelular/genética , Vírus da Hepatite B/metabolismo , Neoplasias Hepáticas/genética , Hepatite B Crônica/complicações , Aflatoxinas/toxicidade , Aflatoxina B1/toxicidade , Carcinógenos/toxicidade , Carcinogênese/induzido quimicamente
11.
Metabolites ; 13(10)2023 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-37887380

RESUMO

We developed a machine-learning system for the selective diagnostics of adenocarcinoma (AD), squamous cell carcinoma (SQ), and small-cell carcinoma lung (SC) cancers based on their metabolomic profiles. The system is organized as two-stage binary classifiers. The best accuracy for classification is 92%. We used the biomarkers sets that contain mostly metabolites related to cancer development. Compared to traditional methods, which exclude hierarchical classification, our method splits a challenging multiclass task into smaller tasks. This allows a two-stage classifier, which is more accurate in the scenario of lung cancer classification. Compared to traditional methods, such a "divide and conquer strategy" gives much more accurate and explainable results. Such methods, including our algorithm, allow for the systematic tracking of each computational step.

12.
Cureus ; 15(8): e44110, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37638263

RESUMO

The COVID-19 pandemic has posed significant therapeutic challenges in addressing acute respiratory distress syndrome (ARDS). This serious illness has caused numerous fatalities worldwide and has had profound health and economic impacts. Previous studies have shown that mesenchymal stem cells (MSCs) can suppress ARDS. In this case series, we report on the treatment of nine patients with a single intravenous dose of 100 million hypoxic cultured umbilical cord-derived MSCs (UC-MSCs). Following the intravenous administration of UC-MSCs, obtained from the lining of the umbilical cord, longitudinal laboratory analysis revealed a sustained decrease in inflammatory markers and stabilized pulmonary function in eight out of nine patients. UC-MSCs possess immunomodulatory and anti-inflammatory properties, enabling them to attenuate the cytokine storm and potentially aid in lung repair. Importantly, no adverse events associated with the treatment were observed. These findings collectively suggest that a cell-based approach significantly enhances the survival rate of ARDS induced by SARS-CoV-2 and offers a promising treatment option in both preclinical and clinical settings.

13.
CNS Oncol ; 12(3): CNS100, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37435740

RESUMO

Primary T-cell CNS lymphoma is a rare and aggressive malignancy. High-dose methotrexate (MTX) based chemotherapy regimens are used as standard first-line treatment, followed by consolidative strategies to improve the duration of response. Although MTX-based therapy has been shown to be efficacious, treatment options for MTX-refractory disease are not well-defined. Here, we report a case of a 38-year-old man with refractory primary T-cell CNS lymphoma who demonstrated a complete response to pemetrexed treatment. He subsequently received conditioning chemotherapy consisting of thiotepa, busulfan and cyclophosphamide followed by autologous stem cell transplantation. The patient continues to remain recurrence-free to date at 9 years post-treatment.


Assuntos
Neoplasias do Sistema Nervoso Central , Transplante de Células-Tronco Hematopoéticas , Linfoma de Células T , Masculino , Humanos , Adulto , Pemetrexede/uso terapêutico , Neoplasias do Sistema Nervoso Central/patologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Transplante Autólogo , Linfoma de Células T/tratamento farmacológico , Terapia Combinada
14.
CNS Oncol ; 12(3): CNS102, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37462385

RESUMO

Aim: The EMulate Therapeutics Voyager™ is a simple, wearable, home-use device that uses an alternating electromagnetic field to alter biologic signaling within cells. Objective: To assess the safety/feasibility of the Voyager in the treatment of recurrent glioblastoma (rGBM). Methods: In this study, patients with rGBM were treated with Voyager as monotherapy or in combination with standard chemotherapy at the Investigator's discretion. Safety was assessed by incidence of adverse events associated with the Voyager. Patients were followed until death. Results: A total of 75 patients were enrolled and treated for at least one day with the Voyager (safety population). Device-related adverse events were uncommon and generally did not result in interruption or withdrawal from treatment. There were no serious adverse events associated with Voyager. A total of 60 patients were treated for at least one month (clinical utility population). The median progression-free survival (PFS) was 17 weeks (4.3 months) in the Voyager only group (n = 24) and 21 weeks (5.3 months) in the Voyager + concurrent therapy group (n = 36). The median overall survival (OS) was 7 months in the Voyager only group and 9 months in the Voyager + concurrent therapy group. In patients treated with Voyager + concurrent therapy, the median OS for patients enrolled with their 1st or 2nd recurrence (n = 26) was 10 months, while in patients enrolled with their 3rd or 4th recurrence (n = 10) OS was 7 months. Conclusion: The data support the safety and feasibility of the Voyager for the treatment of rGBM. Further prospective study of the device is warranted. Trial Registration Number: NCT02296580 (ClinicalTrials.gov).


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Neoplasias Encefálicas/tratamento farmacológico , Estudos de Viabilidade , Glioblastoma/tratamento farmacológico , Recidiva Local de Neoplasia , Estudos Prospectivos
15.
FASEB J ; 37(8): e23068, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37436778

RESUMO

In sporadic amyotrophic lateral sclerosis (sALS), IL-17A- and granzyme-positive cytotoxic T lymphocytes (CTL), IL-17A-positive mast cells, and inflammatory macrophages invade the brain and spinal cord. In some patients, the disease starts following a trauma or a severe infection. We examined cytokines and cytokine regulators over the disease course and found that, since the early stages, peripheral blood mononuclear cells (PBMC) exhibit increased expression of inflammatory cytokines IL-12A, IFN-γ, and TNF-α, as well as granzymes and the transcription factors STAT3 and STAT4. In later stages, PBMCs upregulated the autoimmunity-associated cytokines IL-23A and IL-17B, and the chemokines CXCL9 and CXCL10, which attract CTL and monocytes into the central nervous system. The inflammation is fueled by the downregulation of IL-10, TGFß, and the inhibitory T-cell co-receptors CTLA4, LAG3, and PD-1, and, in vitro, by stimulation with the ligand PD-L1. We investigated in two sALS patients the regulation of the macrophage transcriptome by dimethyl fumarate (DMF), a drug approved against multiple sclerosis and psoriasis, and the cyclic GMP-AMP synthase/stimulator of interferon genes (cGAS/STING) pathway inhibitor H-151. Both DMF and H-151 downregulated the expression of granzymes and the pro-inflammatory cytokines IL-1ß, IL-6, IL-15, IL-23A, and IFN-γ, and induced a pro-resolution macrophage phenotype. The eicosanoid epoxyeicosatrienoic acids (EET) from arachidonic acid was anti-inflammatory in synergy with DMF. H-151 and DMF are thus candidate drugs targeting the inflammation and autoimmunity in sALS via modulation of the NFκB and cGAS/STING pathways.


Assuntos
Esclerose Amiotrófica Lateral , Citocinas , Humanos , Citocinas/metabolismo , Interleucina-17 , Fumarato de Dimetilo , Leucócitos Mononucleares/metabolismo , Esclerose Amiotrófica Lateral/tratamento farmacológico , Granzimas , Inflamação/tratamento farmacológico , Nucleotidiltransferases
16.
Front Neurosci ; 17: 1129434, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37274223

RESUMO

The Olig genes encode members of the basic helix-loop-helix (bHLH) family of transcription factors. Olig1, Olig2, and Olig3 are expressed in both the developing and mature central nervous system (CNS) and regulate cellular specification and differentiation. Over the past decade extensive studies have established functional roles of Olig1 and Olig2 in development as well as in cancer. Olig2 overexpression drives glioma proliferation and resistance to radiation and chemotherapy. In this review, we summarize the biological functions of the Olig family in brain cancer and how targeting Olig family genes may have therapeutic benefit.

17.
Res Sq ; 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37333134

RESUMO

Recurrence is the primary life-threatening complication for medulloblastoma (MB). In Sonic Hedgehog (SHH)-subgroup MB, OLIG2-expressing tumor stem cells drive recurrence. We investigated the anti-tumor potential of the small-molecule OLIG2 inhibitor CT-179, using SHH-MB patient-derived organoids, patient-derived xenograft (PDX) tumors and mice genetically-engineered to develop SHH-MB. CT-179 disrupted OLIG2 dimerization, DNA binding and phosphorylation and altered tumor cell cycle kinetics in vitro and in vivo, increasing differentiation and apoptosis. CT-179 increased survival time in GEMM and PDX models of SHH-MB, and potentiated radiotherapy in both organoid and mouse models, delaying post-radiation recurrence. Single cell transcriptomic studies (scRNA-seq) confirmed that CT-179 increased differentiation and showed that tumors up-regulated Cdk4 post-treatment. Consistent with increased CDK4 mediating CT-179 resistance, CT-179 combined with CDK4/6 inhibitor palbociclib delayed recurrence compared to either single-agent. These data show that targeting treatment-resistant MB stem cell populations by adding the OLIG2 inhibitor CT-179 to initial MB treatment can reduce recurrence.

18.
Med Oncol ; 40(7): 197, 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37291277

RESUMO

Gliomas are the most prevalent neurological cancer in the USA and care modalities are not able to effectively combat these aggressive malignancies. Identifying new, more effective treatments require a deep understanding of the complex genetic variations and relevant pathway associations behind these cancers. Drawing connections between gene mutations with a responsive genetic target can help drive therapy selections to enhance patient survival. We have performed extensive molecular profiling of the Capicua gene (CIC), a tumor and transcriptional suppressor gene, and its mutation prevalence in reference to MAPK activation within clinical glioma tissue. CIC mutations occur far more frequently in oligodendroglioma (52.1%) than in low-grade astrocytoma or glioblastoma. CIC-associated mutations were observed across all glioma subtypes, and MAPK-associated mutations were most prevalent in CIC wild-type tissue regardless of the glioma subtype. MAPK activation, however, was enhanced in CIC-mutated oligodendroglioma. The totality of our observations reported supports the use of CIC as a relevant genetic marker for MAPK activation. Identification of CIC mutations, or lack thereof, can assist in selecting, implementing, and developing MEK/MAPK-inhibitory trials to improve patient outcomes potentially.


Assuntos
Neoplasias Encefálicas , Glioma , Oligodendroglioma , Humanos , Oligodendroglioma/genética , Proteínas Repressoras/genética , Glioma/genética , Glioma/patologia , Mutação , Resultado do Tratamento , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia
19.
Sci Rep ; 13(1): 7317, 2023 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-37147496

RESUMO

Chordomas are rare slow growing tumors, arising from embryonic remnants of notochord with a close predilection for the axial skeleton. Recurrence is common and no effective standard medical therapy exists. Thymidylate synthase (TS), an intracellular enzyme, is a key rate-limiting enzyme of DNA biosynthesis and repair which is primarily active in proliferating and metabolically active cells. Eighty-four percent of chordoma samples had loss of TS expression which may predict response to anti-folates. Pemetrexed suppresses tumor growth by inhibiting enzymes involved in folate metabolism, resulting in decreased availability of thymidine which is necessary for DNA synthesis. Pemetrexed inhibited growth in a preclinical mouse xenograft model of human chordoma. We report three cases of metastatic chordoma that had been heavily treated previously with a variety of standard therapies with poor response. In two cases, pemetrexed was added and objective responses were observed on imaging with one patient on continuous treatment for > 2 years with continued shrinkage. One case demonstrated tumor growth after treatment with pemetrexed. The two cases which had a favorable response had a loss of TS expression, whereas the one case with progressive disease had TS present. These results demonstrate the activity of pemetrexed in recurrent chordoma and warrant a prospective clinical trial which is ongoing (NCT03955042).


Assuntos
Cordoma , Humanos , Animais , Camundongos , Pemetrexede/farmacologia , Pemetrexede/uso terapêutico , Cordoma/tratamento farmacológico , Estudos Prospectivos , Guanina/farmacologia , Guanina/uso terapêutico , Glutamatos/uso terapêutico , Glutamatos/farmacologia , Recidiva Local de Neoplasia/tratamento farmacológico , DNA , Timidilato Sintase/genética , Timidilato Sintase/metabolismo
20.
Future Sci OA ; 9(6): FSO864, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37228857

RESUMO

Traumatic brain injury (TBI) is a significant cause of mortality and morbidity worldwide resulting from falls, car accidents, sports, and blast injuries. TBI is characterized by severe, life-threatening consequences due to neuroinflammation in the brain. Contact and collision sports lead to higher disability and death rates among young adults. Unfortunately, no therapy or drug protocol currently addresses the complex pathophysiology of TBI, leading to the long-term chronic neuroinflammatory assaults. However, the immune response plays a crucial role in tissue-level injury repair. This review aims to provide a better understanding of TBI's immunobiology and management protocols from an immunopathological perspective. It further elaborates on the risk factors, disease outcomes, and preclinical studies to design precisely targeted interventions for enhancing TBI outcomes.


Traumatic brain injury (TBI) is a leading cause of death and disability worldwide due to falls, car accidents, sports and blast injuries. TBI causes severe, life-threatening consequences due to inflammation in the brain. Unfortunately, no current therapy or drug protocol can address the complexity of TBI, leading to long-term chronic inflammation. However, the immune response plays a crucial role in repairing injured brain tissue. This review aims to provide a better understanding of TBI's immunobiology and management protocols to design targeted interventions for better outcomes in TBI patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...